SPS-Clock Benutzerhandbuch

Deutsch

SPS-CLOCK Art.Nr. 9365

11.02.2021

© PI 2021

Inhaltsverzeichnis

SPS-Clock

1 Beschreibung

2 Systemvorraussetzungen

- 2.1 Software
- 2.2 Hardware

3 Anschlussmöglichkeiten

4 Installation

4.1 Hardware

5 Bedienelemente

- 5.1 Status LEDs
- 5.2 DIP-Schalter

6 Konfiguration

- 6.1 Auslesen der Register
 - 6.1.1 Registerdaten

6.1.1.1 Statusbits

6.1.1.2 Wochentag

6.2 SPS-Programm

6.2.1 Daten(Arbeits)-DB

6.2.2 OB1

- 6.2.3 Beispiel Aufruf FB für FB99 (FB1)
- 6.2.4 SPS-CLOCK Funktionsbaustein (FB99)

7 Technische Daten

7.1 Pinbelegung 15pol. Antennenanschluss

SPS-Clock

1 Beschreibung

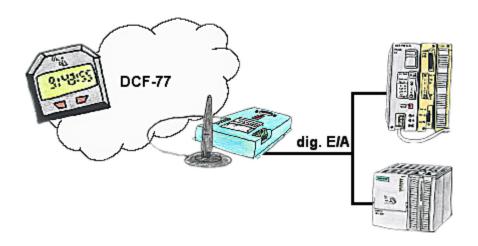
Die SPS-Clock ist ein DCF-Empfänger mit dem über die digitale E/A der SPS die Atomzeit empfangen werden kann. Hierfür benötigen Sie lediglich einige Aus- und Eingänge Ihrer SPS und ein Programm in Ihrer SPS, das die SPS-Clock abfrägt und die Zeit in eine DB hinterlegt. Das Programm wird in diesem Handbuch noch beschrieben.

Folgenden Zeitinformationen stehen zur Verfügung:

- Sekunde
- Minute
- Stunde
- Tag
- Monat
- Jahr (2-Stellig)
- Wochentag (Mo,Di,...)
- Statusbits (DCF-OK,Sommerzeit,Winterzeit,..)

2 Systemvorraussetzungen

2.1 Software


• Programm in der SPS zur Abfrage der SPS-Clock (wird im Kapitel "Konfiguration" beschrieben)

2.2 Hardware

- 5 digitale Eingänge an der SPS
- 5 digitale Ausgänge an der SPS
- DCF-Antenne
- optional DCF-Verstärker
- 24V DC Spannungsversorgung

3 Anschlussmöglichkeiten

Atomzeit/Funkuhr an SPS-Steuerung

4 Installation

4.1 Hardware

Verbindung zur SPS:

Eingänge der SPS-CLOCK mit den digitalen Ausgängen der SPS verbinden Ausgänge des SPS-CLOCK mit den digitalen Eingängen der SPS verbinden SPS-Clock mit +24V Spannung versorgen.

Die Funktionen werden nach Bedarf von der SPS abgerufen und sind im Normalfall (außer bei extrem schnellem Polling der SPS) nicht zeitkritisch. Ein- und Ausgänge sollten bitkompatibel mit der SPS verbunden werden. Bei Verwendung der Beispiel-SPS-Software ist dies unbedingt erforderlich.

Eingänge: Ansteuerung über +24V (Log.1)

kein Signal entspricht 0V (Log.0)


Ausgänge: Bei Log.1 werden +24V durchgeschaltet

Bei Log.0 findet keine Durchschaltung statt

Hinweis: In der aktuellen Version (1.0) der SPS-CLOCK kann auf das Eingangsbit 4 verzichtet werden, da die entsprechenden Register nicht genutzt werden.

5 Bedienelemente

5.1 Status LEDs

DCF-Signal LED:

Grüne LED Aus: kein DCF-Signal wird empfangen

Grüne LED Blinkt: DCF-Signal wird empfangen

Mode LED:

Grüne LED Aus:

keine gültige Uhrzeit vorhanden d.h. die Uhr wurde nach dem Einschalten nicht mit einem DCF-Signal synchronisiert

Grüne LED Blinkt:

freilaufende (Quarz) Uhr in Betrieb d.h. das DCF-Signal ist derzeit nicht gültig vorhanden. Interne Uhr wurde 1x synchronisiert und läuft weiter. Statusbits werden nicht ausgegeben.

5V LED:

Grüne LED Aus: Interne 5V werden nicht generiert

Grüne LED An: Interne 5V werden generiert und stehen zur Verfügung

24V LED:

Grüne LED Aus:

Spannungsversorgung 24V sind nicht am Gerät angeschlossen

Grüne LED An:

Spannungsversorgung 24V sind am Gerät angeschlossen

Sommer/Winterzeit Umstellungen werden nicht vorgenommen.

Grüne LED An:

Im DCF-Betrieb werden alle Daten vom Sender übernommen (Atomzeit). Statusbits werden ausgegeben. Sommer/Winterzeit Umstellungen werden automatisch vorgenommen.

5.2 DIP-Schalter

Die DIP-Schalter sind für zukünftige Verwendung reserviert und müssen im normalen Betrieb auf "0" (OFF) stehen. Sind ein oder mehrere DIP-Schalter auf "1" (ON), kann es zu Fehlfunktionen kommen.

6 Konfiguration

6.1 Auslesen der Register

Die Register (gem. Tabelle) werden wie folgt ausgelesen:

- 1. (E) "0" Ausgeben
- 2. (E) '00000' Abfragen
- 3. (N) Register Ausgeben
- 4. (N) ca. 50 ms Warten (hängt von der Peripherie der SPS ab, SPS-CLOCK reagiert nach 2ms)
- 5. (N) Wert Abfragen
- 6. (N) Parity Auswerten
- 7. weitere Abfragen
- (N) = notwendige Schritte für die Abfrage
- (E) = empfohlene Schritte für eine sichere Abfrage

6.1.1 Registerdaten

Die Zeitinformationen können über folgende Register ausgelesen werden:

Register Nr.	Funktion	Wertigkeit
0	keine Funktion, Rückmeldung	00000
1	Statusbits	PWWWW
2	Sekunden (Bit 0-3)	PWWWW
3	Sekunden (Bit 4-7)	PWWWW
4	Minuten (Bit 0-3)	PWWWW
5	Minuten (Bit 4-7)	PWWWW
6	Stunden (Bit 0-3)	PWWWW
7	Stunden (Bit 4-7)	PWWWW
8	Tage (Bit 0-3)	PWWWW

9	Tage (Bit 4-7)	PWWWW
10	Monate (Bit 0-3)	PWWWW
11	Monate (Bit 4-7)	PWWWW
12	Jahre (Bit 0-3)	PWWWW
13	Jahre (Bit 4-7)	PWWWW
14	Wochentag	PWWWW
15	nicht belegt	01111
16	nicht belegt	
17	nicht belegt	
18	nicht belegt	
19	nicht belegt	
20	nicht belegt	
21	nicht belegt	
22	nicht belegt	
23	nicht belegt	
24	nicht belegt	
25	nicht belegt	
26	nicht belegt	
27	nicht belegt	
28	nicht belegt	
29	nicht belegt	
30	nicht belegt	
31	nicht belegt	

P = Parity-Bit (ungerade)

W = Datenwert

Die Register 2-13 sind geteilte Binärwerte (Bit 7..4 und 3..0)

6.1.1.1 Statusbits

0 = Reserveantenne ist an (am Sender in Mainfingen/Offenbach)

1 = DCF-Betrieb des SPS-CLOCK

2 = UTC + 2h (OEZ/Sommerzeit)

3 = UTC + 1h (MEZ/Winterzeit)

6.1.1.2 Wochentag

- 1 = Montag
- 2 = Dienstag
- 3 = Mittwoch
- 4 = Donnerstag
- 5 = Freitag

6.2 SPS-Programm

Das mitgelieferte Testprogramm auf der CD im Verzeichnis \LIZENZ\SPS-CLOCK\ frei parametrierbar und änderbar. Es überträgt zyklisch alle Daten in den Arbeits DB (DW9-16). Sollten Sie nicht alle Daten benötigen so können Sie den Baustein (FB99) leicht auf Ihre Bedürfnisse anpassen.

6.2.1 Daten(Arbeits)-DB

Die Nummer des DB ist vor dem Aufruf des FB99 anzugeben (siehe FB1)

DB 099 Datei: SPSCLKST.S5D LAE=25

```
Datenbaustein fuer SPS-CLOCK
0: KH = 0000:
1: KF = +00000; Intern Schrittkette
2: KF = +00000; Intern Abzurufendes Register
3: KH = 0000:
4: KH = 0000:
5: KH = 0000:
6: KH = 0000;
7: KH = 0000:
8: KH = 0000;
9: KM = 00000000 00000000; Statusbits
10: KF = +00000; Sekunden
11: KF = +00000; Minuten
12: KF = +00000; Stunden
13: KF = +00000; Tage
14: KF = +00000; Monate
15: KF = +00000; Jahre
16: KF = +00000; Wochentag
17: KH = 0000;
18: KH = 0000;
19: KH = 0000;
```

6.2.2 OB1

Der OB1 wird hier nur zum Programmaufruf des Beispiel FB1 benötigt

OB 001 Datei: SPSCLKST.S5D LAE=9

```
Netzwerk 1 von 1
:SPA FB 1
Name :MAIN
:
:BE
```

6.2.3 Beispiel Aufruf FB für FB99 (FB1)

Der FB1 hat folgende Funktionen:

- Übernahme der Eingänge (MB200)
- Vergabe der DB-Nummer (vor FB-Aufruf)
- Parametrierung des FB (TD + TO)
- Übernahme der Ausgänge (MB201)

Die Nummer des FB's ist frei wählbar.

Der Aufruf des FB99 kann durch SPA oder SPB erfolgen.

Ein Mehrfachaufruf im Programm ist möglich.

FB 001 Datei: SPSCLKST.S5D LAE=28

Netzwerk 1 von 1 Name : MAIN

: L EB 0 - Eingaenge von SPS-CLOCK

:T MB 200 in SME

: L KF 99 - Arbeits-DB

: SPA FB 99

Name: SPSCLOCK

TD : T 98 TO : T 99

: L AB 1 - wird Bit 4 nicht genutzt

: L KH 00E0 so kann hier auch 00F0 stehen

: UW

: L MB 201 - Ausgaenge von SME uebergeben

: OW

: T AB 1

: BE

6.2.4 SPS-CLOCK Funktionsbaustein (FB99)

Der FB99 hat folgende Funktionen:

- Abtasten der einzelnen Register
- Parity Prüfung der Werte
- Übernahme und zusammensetzen der Werte in die Datenworte

Die Nummer des FB's ist frei wählbar.

Im Netzwerk 5 lässt sich der zu übertragende Block leicht beeinflussen (Ober und Untergrenze)

FB 099 Datei: SPSCLKST.S5D LAE=141

Netzwerk 1 von 6 Name : SPSCLOCK

: T MW 240 - Arbeits-DB sichern

: B MW 240 und oeffnen

: A DB 0

: L MB 200 - Nicht fuer SPS-Clock verwendete Bits ausblenden

: L KH 001F

: UW

: T MB 200

: U M 212.0 - VKE 0 Bit erzeugen

: R M 212.0

. ***

Netzwerk 2 von 6 "Null" und "Fehler"-Signal Auswertung

: L KH 0000 : L MB 200

: !=F

```
: L
                   KH 000F
      : !=F
      :=
                   M 212.2
Netzwerk 3 von 6 Schritt 0 / "0" Ausgeben
      : L
                   DW 1
      : L
                   KF 0
      :><F
      : SPB
                   =M001
      : L
                                  - Ausgabe "0"
                   KH 0000
      : T
                   MB 201
      : L
                   KH 0000
                                  - Wenn "Null" als Antwort dann naechster Schritt
      :><F
      : SPB
                   =M001
      : U
                   M 212.0
      : SE
                   =TD
                                  - Timer reset
      : L
                   KF 1
      : T
                   DW 1
                                  - naechter schritt
M001: ***
Netzwerk 4 von 6 Schritt 1 / "Register" Ausgeben
      : L
                   DW 1
      : L
                   KF 1
      :><F
      : SPB
                   =M001
      : L
                   DW 2
                                  - Ausgabe "Register"
      : T
                   MB 201
      : L
                   KT 0010.0
      : SE
                   =TD
                   =TD
      : UN
                                  - wenn Timer abgelaufen
      : SPB
                   =M001
                                  dann weitere Pruefung
      : R
                   M 212.7
                                  - zu Beginn Parity-Bit ruecksetzen
      : L
                   MB 200
                                  und Eingangsdaten
      : T
                                  temporaer uebernehmen
                   MW 214
      : S
                                  und Kennbit setzen
                   M 214.5
M003: UN
                   M 215.0
      : SPB
                   =M002
      : UN
                   M 212.7
                                  - Parity in abhaengigkeit vom Datenbit toggeln
      :=
                   M 212.7
M002:L
                   MW 214
      : SRW
      : T
                   MW 214
      : UN
                   M 214.0
                                  - wenn nicht fertig dann Schleife
      : SPB
                   =M003
      : UN
                   M 212.7
                                  - Pruefen ob Parity O.K.
      : SPB
                                  und wenn Nein dann Ende
                   =M004
      : L
                   DW 2
                                  - Registervektor laden
```

"Null"-Signal

:=

M 212.1

```
: T
                   MW 214
      : U
                   M 215.0
                                 - Bit sichern
      :=
                   M 212.7
      : SRW
                                 und durch 2 teilen
                   1
      :1
                   9
                                 und um 9 erhoehen
      : T
                   MW 214
      : U
                                 - welche Tetrade?
                   M 212.7
      : SPB
                   =M005
      : B
                   MW 214
                                 - Low Tetrade
      : L
                   DR 0
                                 Eintragen
      : L
                   KH 00F0
      : UW
      : L
                   MB 200
      : SLW
                   12
      : SRW
                   12
      : OW
      : B
                   MW 214
      : T
                   DR 0
      : SPA
                   =M006
M005: B
                                 - High Tetrade
                   MW 214
      : L
                   DR 0
                                 Eintragen
      : L
                   KH 000F
      : UW
      : L
                   MB 200
      : SLW
                   12
      : SRW
                   8
      : OW
      : B
                   MW 214
      : T
                   DR 0
M006: L
                                 - Naechstes Register
                   DW 2
      :1
                   1
      : T
                   DW 2
M004:L
                                 - Fehlerbehandlung
                   KF 0
      : T
                   DW 1
                                 ruecksprung
M001: ***
Netzwerk 5 von 6 Registerbegrenzung
                                 *** letztes Register (14) ***
      : L
                   KF 14
      : L
                   DW 2
      :>=F
      : U(
      : L
                   KF 0
                                 01 *** erstes Register +1 (1) ***
      :>F
                                 01
                                 01
      :)
      : SPB
                   =M001
      : L
                   KF 1
     : T
                   DW 2
M001: ***
```

7 Technische Daten

Versorgungsspannung: 24V DC +/- 20%

Leistungsaufnahme: 3 Watt

Anzeige: 4 Status-LEDs **Bedienung/Konfiguration:** DIP-Switch

zur AG:

5 x Schraubklemme für E/A-Eingänge

Schnittstellen: 5 x Schraubklemme für E/A-Ausgänge

sonstige:

2 x Schraubklemme für 24V/DC Spannungsversorgung

15pol Buchse für DCF77-Antennenanschluss

Betriebstemperatur: 0 - 55°C

Gehäuse: pulverbeschichtetes Metallgehäuse mit Montageflansch

Abmessungen: 97 x 149 x 36 mm

Lieferumfang:

SPS-CLOCK

7.1 Pinbelegung 15pol. Antennenanschluss

Pin Nr.	Kurzform	Bezeichnung	Richtung
1	GNDA	Schirm	-
4	+5V	+5V Spannungsversorgung	Ausgang
5	GND	Masse	Ausgang
8	GNDA	Schirm	
10	DCF-IN	DCF-Signal Empfangsleitung	Eingang